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There has been much interest in how the hippocampus codes time
in support of episodic memory. Notably, while rodent hippocam-
pal neurons, including populations in subfield CA1, have been
shown to represent the passage of time in the order of seconds
between events, there is limited support for a similar mechanism
in humans. Specifically, there is no clear evidence that human
hippocampal activity during long-term memory processing is
sensitive to temporal duration information that spans seconds.
To address this gap, we asked participants to first learn short event
sequences that varied in image content and interval durations.
During fMRI, participants then completed a recognition memory
task, as well as a recall phase in which they were required to
mentally replay each sequence in as much detail as possible. We
found that individual sequences could be classified using activity
patterns in the anterior hippocampus during recognition memory.
Critically, successful classification was dependent on the conjunction
of event content and temporal structure information (with un-
successful classification of image content or interval duration alone),
and further analyses suggested that the most informative voxels
resided in the anterior CA1. Additionally, a classifier trained on
anterior CA1 recognition data could successfully identify individual
sequences from the mental replay data, suggesting that similar
activity patterns supported participants’ recognition and recall
memory. Our findings complement recent rodent hippocampal re-
search, and provide evidence that long-term sequence memory repre-
sentations in the human hippocampus can reflect duration information
in the order of seconds.

hippocampus | CA1 | episodic memory | time | functional magnetic
resonance imaging

Space and time are significant dimensions of our episodic
memories (1). However, while much is known about the

neural substrates that contribute to spatial cognition and mem-
ory (2–4), relatively little is known about how the brain, in par-
ticular the medial temporal lobe (MTL), processes temporal
information in the service of episodic memory. The discovery of
rodent hippocampal time cells (5–7), which fire at specific mo-
ments during the empty delay between two events, suggests a
potential hippocampal mechanism for representing the temporal
structure of memories (8). Crucially, however, it is unclear whether
a similar hippocampal mechanism supports human memory.
Because time cells in the hippocampus (HPC) of the rodent

signal the passage of time in the order of seconds, one would
expect that a similar neural mechanism in humans would lead to
the human HPC representing temporal duration information in
the order of seconds in the context of episodic memory. To our
knowledge, however, there is no existing evidence for this. No
work has examined human HPC involvement in memory for
temporal durations in the order of seconds within the context of
long-term memory. While recent human investigations have fo-
cused on HPC contributions to the representation of temporal
order, context, and distance (9–12), there remains little insight

into the hypothesized involvement of the human HPC in memory
for temporal durations that spans seconds. Furthermore, studies
that have investigated duration memory using short-term work-
ing memory tasks (13–16) have often observed HPC involvement
in relatively long (i.e., greater than ∼90 s) but not shorter du-
rations, which runs counter to the proposed characteristics of
time cells and the fact that studies (5–7) have observed moment-
to-moment time cell firing during delay periods that are less than
20 s in duration. Notably, because the HPC is suggested to be
critical for sequence processing and the temporal binding of
temporally discrete events (17–21), the involvement of this
structure in representing temporal durations may be contingent
on such information being embedded within a set of contiguous
sequence events. Suggestive of this, we recently demonstrated
using functional magnetic resonance imaging (fMRI) that human
HPC activity is sensitive to changes in the durations of short
intervals within event sequences (22, 23). Importantly, however,
because these findings were in the context of a trial-unique
match–mismatch working memory paradigm, their relevance to
long-term memory is unknown and it remains to be seen whether
human HPC activity contains an abstract code for duration in-
formation contained within sequences.
To bridge this gap between the rodent and human literature,

and determine whether the human HPC represents duration
information in support of long-term memory, the present study
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employed a sequence-based memory paradigm with high-resolution
fMRI (Fig. 1A). Participants first learned four distinct event
sequences, each 9 s in length. Image identity (two series of three
scene images) and temporal duration (two series of intervals
separating each image) were manipulated orthogonally in a 2 ×
2 factorial design (Fig. 1B). Thus, each individual sequence could
only be remembered by combining information about the images
and the temporal structure. During fMRI scanning, participants
were then administered a recognition test for these sequences and
were also cued to mentally replay each sequence. (Our use of the
term “mental replay” is intended to capture the requirement of
participants to play out each sequence in their mind in as much
pictorial and temporal detail as possible during the recall task, and
is distinct from the term “hippocampal replay,” which is often used
to refer to the sequential reactivation of HPC place cells asso-
ciated with recent spatial experience, during sleep or wakefulness
when the animal is stationary.) We explored whether the

manipulation of image identity and temporal duration resulted in
differential multivoxel patterns in the HPC. Specifically, we pre-
dicted that if sequence representations in the HPC contained in-
formation about temporal durations in the order of seconds, then a
classifier trained on data from this region would be successful in
decoding individual sequences (Fig. 1C).

Results
During fMRI scanning, participants were presented with the
sequences that they had learned across two prescanning sessions
(∼24 h and immediately before scanning), and were required to
identify each one with a button press. Participants exhibited good
recognition memory: the mean accuracies across participants for
the four sequences were 0.88 (SD = 0.11), 0.86 (SD = 0.10), 0.81
(SD = 0.19), and 0.85 (SD = 0.10), respectively, and perfor-
mance did not differ significantly across sequences [F(3, 48) =
1.27, P = 0.29]. To ensure that participants made their recog-
nition memory judgments on the entirety of each sequence, we
also included challenging catch trials (11.11% of trials) in which
the two intervals within the presented sequence were identical.
Participants were required to refrain from responding on the
catch trials, and were able to do so on the majority of these trials
(mean accuracy = 0.71, SD = 0.20).
To examine the representations underlying successful se-

quence recognition, we analyzed multivoxel patterns of activity
associated with correct trials. An average voxel-wise response
map based on t-statistics was generated for each sequence type
(i.e., all images and durations within a 9-s sequence) and ac-
quisition run, incorporating correctly recognized trials only
(mean 17.64 of 112 trials excluded per participant due to an
incorrect or missing response) (Methods). Given our a priori
hypothesis, we focused our analyses on the HPC, using separate
anterior (aHPC) and posterior (pHPC) regions-of-interest (ROI)
to take into consideration the functional and anatomical distinc-
tions along the longitudinal axis of this structure (4, 24, 25) (Fig. 2A).
The parahippocampal place area (PPA) was also chosen as an ROI,
given our use of scene images and the involvement of this cortical
region in processing scene information (26, 27).
First, we investigated whether multivoxel patterns in our se-

lected ROIs reflected sequence-specific neural activity (i.e.,
combined event and temporal duration information). To this
end, we used a four-way classifier to determine whether it was
possible to decode individual sequences (“sequence decoding”).
An ANOVA of classification performance across participants
and ROIs revealed a significant effect of region [F(2, 45) = 6.73,
P = 0.0033], driven by above-chance classification in the aHPC
[t(16) = 2.82, P = 0.0020, one-tailed], but not the pHPC
[t(16) = −1.10, P = 0.85, one-tailed] or the PPA [t(15) = −0.72,
P = 0.75, one-tailed] (Fig. 2B). Sequence decoding accuracy was
also significantly greater in the aHPC compared with the pHPC
[t(16) = 3.13, P = 0.0070, two-tailed] and PPA [t(15) = 2.63, P =
0.013, two-tailed], highlighting sequence-specific neural activity
in the aHPC but not the other ROIs.
Next, we examined whether successful decoding could be

achieved based on scene (“image decoding”) or temporal dura-
tion (“temporal decoding”) information only (i.e., two-way
decoding). An ANOVA of mean image decoding accuracy
revealed a significant effect of region [F(2, 45) = 4.13, P = 0.036],
with classification being significantly above chance in the PPA
[t(15) = 2.08, P = 0.027, one-tailed], but not in the aHPC
[t(16) = −0.94, P = 0.816, one-tailed] or pHPC [t(16) = −0.83,
P = 0.79, one-tailed]. Two-way image decoding accuracy in the
PPA was also significantly higher compared with aHPC [t(15) =
2.14, P = 0.037, two-tailed] and pHPC [t(15) = 2.21, P = 0.027,
two-tailed] (Fig. 2C). In contrast, an ANOVA of mean temporal
decoding accuracy revealed that there was no significant effect of
region [F(2, 45) = 0.34, P = 0.75], with classification performance
not being reliable for any of the ROIs (all ts ≤ 0.73, Ps ≥ 0.22,

Fig. 1. (A) Structure of experimental paradigm. (B) Participants were required
to learn, recognize and mentally replay (i.e., recall) four distinct sequences
within a 2 × 2 factorial design (two sets of three images and two sets of interval
durations were used). For fMRI analyses, each entire sequence (presented
during the recognition task or mentally replayed) was modeled as a single
event to create a single t-statistic map. (C) Classification analyses explored four-
way sequence, two-way image, and two-way temporal decoding of recognition
fMRI data using a leave-one-run-out cross-validation method. Four-way se-
quence decoding was conducted on the replay data using a cross-classification
approach (i.e., train on recognition data, test on replay data).
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one-tailed) (Fig. 2D). Thus, activity in the PPA only captured
image information, with none of the ROIs signaling temporal
information alone. Crucially, these two-way classification find-
ings highlight that successful decoding in the aHPC was depen-
dent on the conjunction of image content and temporal structure
information.
While we took steps to equate our images on low-level prop-

erties and demonstrated that the two differing stimulus onsets
did not trigger differing hemodynamic responses (Methods), we
also sought to discount the possibility that classification perfor-
mance could arise due to differences in stimuli or presentation
timing that were inherent to our experimental manipulations. To
this end, we examined the possibility that our four sequences
may differ in their overall univariate response level. This analysis
did not reveal a difference in overall activity, making it unlikely
that our classification performance reflected differential uni-
variate activity associated with each sequence.
In the light of significant four-way sequence decoding in the

HPC, we employed a searchlight analysis to identify the most
informative voxels within this structure. A three-voxel radius
searchlight was applied in conjunction with a four-way classifier
to decode individual sequences across a bilateral MTL ROI,
which also allowed us to examine the potential involvement of
other mnemonic structures within this region. Converging with
our ROI-based classification findings, this revealed a single sig-
nificant cluster in the right aHPC, in the region of the CA1
subfield [P < 0.05 familywise error-corrected; 26 voxels; peak
voxel P = 0.019, x = 29, y = −11, z = −24] (Fig. 3A). Notably,
exploring our searchlight findings further using a P ≤ 0.001 un-
corrected threshold revealed an additional cluster in the right
lateral entorhinal cortex (39 voxels; peak voxel P = 0.001 uncor-
rected, x = 21, y = −1, z = −38) (Fig. 3B). No other clusters were
observed in the MTL.

Our searchlight findings highlighted the possibility of wider
differences across aHPC subfields in the representation of long-
term sequence information. To investigate this, we conducted a
post hoc analysis to examine four-way sequence decoding accuracy
across participant-specific subfield ROIs, including the anterior
CA1, CA2-CA3-dentate gyrus (CA2-CA3-DG), and subiculum
(Fig. 4A). While there was no overall effect of subfield in sequence
decoding accuracy [F(2, 46) = 1.77, P = 0.23], classification ac-
curacy was significantly above chance in the anterior CA1 [t(16) =
2.06, P = 0.021, one-tailed], but not the anterior CA2-CA3-DG
[t(16) = 0.69, P = 0.24, one-tailed] or anterior subiculum [t(16) =−0.083,
P = 0.531, one-tailed] (Fig. 4B).
Finally, we examined the multivoxel patterns of activity during

cued mental replay of individual sequences. On each trial, partici-
pants were asked to mentally replay a target sequence in response
to a visual cue, in as much detail and temporal accuracy as possible.
Once complete, participants indicated the vividness of their mental
replay on a 1–4 scale (4 = high vividness; 1 = low vividness) via a
button press (mean = 2.81, SD = 0.70). Participants’mean response
times for sequences 1–4 were 10.45 s (SD = 2.85), 10.50 s (SD =
3.09), 11.06 s (SD = 2.77), and 10.14 s (SD = 2.29), respectively.
Similar to the recognition task data, a single t-statistic map was
created for each trial, with trials without a response excluded (mean

Fig. 2. A priori ROI results for classification analyses on recognition task
data (train and test on recognition data using leave-one-run-out cross-
validation). (A) The aHPC (red), pHPC (green), and PPA (blue) were used as
ROIs. (B) Sequence decoding accuracy. (C) Image decoding accuracy. (D)
Temporal decoding accuracy. Dashed lines indicate chance performance.
Error bars depict SE, **P < 0.01, *P < 0.05.

Fig. 3. A searchlight analysis for four-way sequence decoding (train and test
on recognition data using leave-one-run-out cross-validation) was conducted
across a bilateral MTL mask, revealing: (A) a significant cluster of voxels in the
right aHPC in the region of CA1 at P < 0.05 small volume corrected; and (B) an
additional cluster of voxels in the right lateral entorhinal cortex at P ≤
0.001 uncorrected (thresholded at P < 0.005 uncorrected for display purposes).
Clusters are rendered on a MNI-152 template (R, right hemisphere), and par-
ticipant group probabilistic map of hippocampal subfields (thresholded at
50%) is shown in A, Insets.
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2.27 of 32 trials excluded per subject). These t-statistic maps were
then averaged for each sequence type within each data-acquisition
run. Because the same neural representations should be reinstated
during recognition and recall memory (28, 29), we hypothesized
that a four-way classifier trained on the recognition data should be
able to successfully decode individual sequences using data from
the recall task. This is indeed what was found. In view of our
searchlight findings we focused on anterior CA1 activity and found
that cross-decoding accuracy was significantly above chance [t(14) =
2.26, P = 0.022, one-tailed] (Fig. 4C), suggesting that distinct se-
quence representations within the anterior CA1 underpinned both
recognition and recall memory. There was no significant relation-
ship between participants’ average vividness ratings and cross-
decoding accuracy (r = −0.091, P = 0.746).

Discussion
Using a sequence memory paradigm together with high-resolution
fMRI, we have provided compelling evidence that human HPC
long-term memory sequence representations are sensitive to
temporal duration information in the order of seconds. Distinct
individual sequences consisting of varying image and temporal
duration information could be decoded successfully from multivoxel
patterns of activity in the aHPC during recognition memory as well
as cued mental replay. Critically, successful decoding cannot be
explained by differences in low-level stimulus properties, varying
hemodynamic responses elicited by differing stimulus onsets, or
overall univariate activity, strongly indicating that the successful
classification reflects the distinct images and temporal structure of
each sequence. These findings complement electrophysiological
studies that have demonstrated that rodent HPC time cells repre-
sent the temporal structure of events in the order of seconds (5–7),
and point toward a similar neural mechanism for representing

temporal information in the service of episodic memory in the
human HPC.
Our finding that the most informative voxels underlying the

four-way decoding of individual sequences reside in CA1 aligns
with earlier research that first identified time cells in the same
subfield in rodent HPC (6, 7). In this work, different ensembles
of CA1 neurons were observed to fire at specific time points
during a short interval between two events, effectively bridging
the gap between these events. It is plausible, therefore, that the
distinct multivoxel patterns of activity associated with each in-
dividual sequence in the present study reflect, in part, activity
from different neuronal populations signaling the temporal
structure within each sequence. Notably, we did not observe
successful decoding of temporal structure alone (i.e., two-way
classification), suggesting that the human HPC does not code
for temporal information in isolation and extends previous ro-
dent work by demonstrating the importance of the HPC in
representing conjunctions of information, including temporal
durations, in the service of memory (see below for further dis-
cussion). Moreover, while rodent studies have examined the
characteristics of time cells in the dorsal HPC, our significant
four-way sequence classification findings were specific to aHPC,
which is suggested to be the human homolog of rodent ventral
HPC (24). Although no rodent work has, to our knowledge,
identified time cell-like neurons within the rodent ventral HPC,
it is interesting to note that a number of human fMRI studies
have implicated the human aHPC in processing other aspects of
temporal structure in the context of other types of mnemonic
tasks. For example, aHPC activity has been associated with
processing temporal regularities in statistical learning (i.e., two
objects occurring regularly in succession) (30, 31) as well as
memory for the temporal distance of autobiographical memories
over a period of a month (11). Finally, while our findings point
toward a role for CA1 in the context of our experimental para-
digm, we cannot discount the contribution of other regions in the
representation of duration information in episodic memory. In-
deed, recent work has found evidence for time cells beyond CA1,
including CA3 (32), as well as the representation of longer time
intervals in the order of hours in CA2 (33), suggesting that the
representation of temporal information in long-term memory
may not be limited to one subfield.
In addition to unsuccessful temporal structure decoding, our

classifier was also not able to decode image information alone on
the basis of activity within the HPC. This contrasts with the PPA,
where significant two-way image decoding was observed, in line
with a role for this region in scene processing (26, 27). The lack
of successful two-way decoding in the HPC highlights that it is
the combination of image and temporal information that is
critical for HPC involvement and is consistent with a role for the
HPC in associative memory (34, 35) and the representation of
conjunctive information (36, 37). Related to this, while human
studies have typically failed to observe a role for the HPC in the
judgment of single durations in the order of seconds (13–16) (see
also ref. 38 for comparable findings in rodent behavioral phar-
macological work), recent fMRI work has suggested that short-
duration information must be embedded within a sequence to
elicit the involvement of this structure (22, 23), in keeping with
the notion that the HPC plays an important role in sequence
memory and the binding of discontiguous events (17–21). For
example, we recently used fMRI to scan participants while they
made match–mismatch judgments of short sequences of scene
images presented before (study phase) and after (test phase) a
jittered 3.5-s delay (23). In support of the idea that the hippo-
campus represents temporal duration information within se-
quences, there was a significant change in study-test HPC pattern
similarity when the temporal durations within a sequence were
altered. The present study provides a significant advance beyond
this work by demonstrating the involvement of the HPC in

Fig. 4. (A) Anterior CA1, CA2-CA3-DG, and subiculum ROIs in a represen-
tative participant. (B) Four-way sequence decoding accuracy of recognition
task data (train and test on recognition data using leave-one-run-out cross-
validation). (C) Four-way cross-decoding of replay data in anterior CA1 (train
on recognition data, test on replay data). Dashed line indicates chance
performance. Error bars depict SE, *P < 0.05.
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representing duration information in conjunction with other
types of information (such as image content in this study and
temporal order) in the context of long-term sequence memory.
Our ability to decode individual sequences provides evidence
that the HPC incorporates temporal duration information into
sequence representations, making it unlikely that classification
performance is driven merely by domain-general mnemonic
processing. Specifically, successful performance on the current
paradigm likely necessitates HPC-dependent pattern completion
(39–41), in which conjunctive sequence information is retrieved
in response to previously learned information (i.e., the presen-
tation of a sequence during the recognition task or a presented
cue during the mental replay task). This mechanism alone,
however, is unlikely to account for a 9-s unfolding of a sequence-
specific pattern of activity in the HPC. Instead, our finding of
significant four-way sequence classification likely reflects the
detection of distinct conjunctive information associated with
each sequence.
A key strength of the present study is that we examined HPC

patterns of activity associated with the recognition and cued
mental replay of sequences. Our finding of successful cross-
classification between these two forms of memory retrieval rein-
forces our interpretation that the observed anterior CA1 activity
during successful sequence recognition reflects sequence-specific
representations and that these same representations contributed
to cued mental replay. Of note, because we manipulated the
temporal structure of the sequence memoranda by adjusting the
duration of the empty intervals within each sequence, participants
were required to encode and retrieve the amount of time between
successive image presentations. This design resembles, to a certain
extent, the examination of HPC time cell activity during the empty
interval between events (6, 42, 43) and differs from recent fMRI
paradigms in which the passage of time is intertwined with other
factors such as the number of events that have transpired between
two time points (12) or the context (e.g., same or different) in
which two events have occurred (10). Thus, our study provides
evidence that human HPC activity can represent elapsed time in
conjunction with other information within a sequence of events in
the context of long-term memory and supports the idea of tem-
poral representation in the HPC, in which both the order and
durations of events are encoded (44).
Interestingly, our searchlight analysis also revealed a cluster of

voxels in lateral entorhinal cortex in association with four-way
sequence decoding. This cluster did not survive our a priori-
corrected statistical threshold (P < 0.05 small volume correction
for bilateral MTL; maximum P = 0.001 uncorrected) but is in
line with recent work demonstrating the representation of tem-
poral information in this region in rodents and humans (45–47).
Although our present paradigm is unable to highlight the distinct
contributions of the lateral entorhinal cortex compared with the
HPC, one possibility is that distinct HPC sequence representa-
tions reflecting specific events and temporal durations may be
supported by input from entorhinal cortex. Indeed, it has been
suggested that temporal representations in CA1 may be driven
by connections with the entorhinal cortex (48) and recent theo-
retical frameworks posit that direct (monosynaptic) and indirect
(through CA3 and DG via the trisynaptic pathway) entorhinal–
CA1 connections are important in establishing temporal sequence
representations through experience (49).
A potential limitation of our experimental paradigm is that the

manner of sequence learning differs from how everyday episodic
memories are typically encoded. Specifically, participants were
asked to pay careful attention to the temporal structure of four
sequences across many repetitions, which is in contrast to ev-
eryday episodic memories that arise from a one-time experience
and for which temporal information is processed implicitly.
While it is important to stress that our paradigm does have the
advantage of assessing memory retrieval without requiring par-

ticipants to make explicit judgments about temporal duration
(i.e., our use of mental replay), it remains to be seen whether our
findings can be generalized to more naturalistic memory para-
digms in which temporal information is learned incidentally after
minimal exposure.
To summarize, we show that multivoxel patterns of HPC activity

are sensitive to the temporal structure of a series of successive
events that unfold over seconds. Furthermore, this information is
stable over multiple stimulus exposures, and can even be decoded
from activity associated with active mental replay. These findings
highlight the importance of human aHPC, and in particular CA1,
in the representation of temporal durations in the order of sec-
onds in long-term sequence memory.

Methods
Participants. Eighteen neurologically healthy individuals participated in the
study (eight female, mean age = 27.00, SD = 5.87), each with normal or
corrected-to-normal vision and no history of neurological illness. All subjects
gave written informed consent before participation. One subject’s data were
subsequently removed due to poor behavioral performance during scanning
(multiple runs with 0 trials correct), leaving a final sample of 17 subjects
(eight female, mean age = 27.18, SD = 6.00). Because one of our experi-
mental conditions required the mental replay of learned sequences, we
assessed participants’ ability to visualize a mental image by administering
the Vividness of Visual Imagery Questionnaire (50), a 16-item self-report
questionnaire that instructs participants to visually image specific details
of specific visual scenes and to record the vividness of the imagery on a five-
point scale (1 = “perfectly clear and as vivid as normal vision” to 5 = “no
image at all, you only know you are thinking of an object”). No participant
received a score greater than 3.75 and the group mean was 2.43 (SD = 0.69).
This work received approval from the University of Toronto (#27455) and
York University (#2016–291) Ethics Boards.

Experimental Paradigm. The experimental paradigm consisted of three
phases: prescan learning, a scanned recognition task, and finally, scanned
active mental replay. Stimuli in the learning and recognition phases were
identical and consisted of six grayscale scene images (1,000 × 750 pixels)
depicting mountain landscapes presented in the center of a black screen. To
ensure that classification of fMRI data was not driven by low-level image
properties, all images were normalized using the SHINE toolbox (51). Spe-
cifically, luminance histograms were equated using a method that maxi-
mized the image quality by optimizing structural similarity to the original
image (52). No scene stimuli were presented during the active mental replay
condition. Instead, participants were cued to recall these images from
memory (see Scanned Mental Replay, below). All experimental tasks were
programmed in E-Prime (v2.2; Psychology Software Tools). Learning took
place outside of the scanner, with stimuli presented on a 15-inch laptop
computer (1,600 × 900-pixel resolution). During scanning, stimuli were
projected (1,920 × 1,080-pixel resolution) on a screen at the head of the MRI
bore and viewed via a mirror attached to the head coil.
Prescan learning. Participants took part in one learning session ∼24 h before
scanning and another session immediately before entering the scanner. The
goal was for participants to learn four different event sequences. Each se-
quence was 9,000 ms in duration and composed of three scene images
separated by two intervals of distinct length. A 2 × 2 factorial design was
implemented in which there were two unique sets of three scene images
(presented in a fixed order, with each scene shown for 2,000 ms), and two
orders of interval duration (1,000 ms followed by 2,000 ms, or vice versa)
(Fig. 1A). Our motivation for using the minimum number of sequences
necessary for a 2 × 2 factorial design (i.e., 4) was to maximize behavioral
performance as well as the amount of fMRI data collected per sequence
within a single scanning session. All scene stimuli were counterbalanced
across participants.

At the start of the first learning session, participants were administered a
viewing task in which theywere exposed to a sequence on each trial and asked
to pay attention to the content of the images and the durations of the intervals.
On each trial, a number (1–4) was first displayed denoting the identity of the
sequence to be shown (1,000 ms), and then the sequence was presented. Each
sequence was shown six times in total, in a pseudorandomized order, with an
intertrial interval (ITI) of 1,000 ms. After this, participants were given an active
training task that was designed to encourage memorization of each of the
event sequences. On each trial, a sequence was presented, followed by
the word “Event?” for 2,000 ms, during which participants indicated which
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sequence they had just seen using one of four preassigned keys with their right
hand. The correct sequence number was then shown for 1,000 ms regardless of
the participant’s button press and the next trial started after a 1,000-ms ITI.
Importantly, catch trials were also included to make sure that participants were
paying attention to both intervals in each sequence. On these trials, the in-
tervals were of the same duration (i.e., both 1,000 or 2,000 ms) and participants
were instructed to withhold from responding. There was a blank feedback
screen for these trials. Trials were presented in blocks of 10, consisting of
2 trials for each sequence and 2 catch trials pseudorandomly ordered. The task
ran until participants got all 10 trials within a block correct.

On completion of the active training task, participants practiced a simu-
lated run of the temporally jittered fMRI recognition task, to ensure they
understood the fMRI task. On each trial, a white fixation cross first appeared
on screen for 2,000 ms. This cross then turned red for 1,000 ms to signal the
upcoming presentation of a sequence, which followed immediately. A white
fixation cross was then presented for 3,000 ms, and this subsequently turned
red for 1,500 ms. During this red fixation cross, participants were asked to
indicate which sequence they had just seen. No feedback was provided and a
jittered ITI of 4,700 ms (SD = 1,800 ms) then ensued. There were 18 trials in
total (4 trials for each of the 4 sequences, plus 2 catch trials) and each se-
quence was equally likely to follow every other sequence.

For the second learning session that was conducted just before scanning,
participants were required to repeat all tasks from the first day. This included
the initial sequence-exposure task, the active training task, and finally a
practice run of the scanned recognition task.

It is important to highlight that before the start of the first learning
session, all participants were explicitly instructed not to use any verbal
strategies during the course of the experiment, including labeling the scenes
or durations, or counting time. A debriefing session following the final fMRI
scan indicated that all subjects bar one adhered to these instructions. This sole
participant’s data were, in any case, not included in the statistical analyses
due to poor behavioral performance.
Scanned recognition. Participants completed seven fMRI runs of the recognition
task (Fig. 1B) with run order counterbalanced across participants. As in the
prescan practice task, there were 18 trials in each run (4 trials for each of the
4 sequences, plus 2 catch trials) and each sequence was equally likely to
follow every other sequence. Responses were made using a four-button MR-
safe response box placed in the right hand.
Scanned mental replay. After the sequence-recognition task, participants un-
derwent two additional fMRI runs during which they were required to recall
and mentally replay the four learned sequences with as much image detail
and as temporally accurate as possible. Each trial started with a 1,000-ms red
fixation cross followed by a 1000-ms cue (nos. 1–4) informing the participant
which of the four sequences they were required to recall. Participants were
then given a 20-s window to mentally replay the target sequence while
keeping their eyes open. To mark the completion of their mental replay,
participants made a button press that also indicated the vividness of their
mental replay on a 1–4 scale, with vividness referring to both the fidelity of
the images and the temporal information recalled (4 = high vividness; 1 =
low vividness). Each fMRI run consisted of 16 trials in total (4 trials for each of
the 4 sequences presented in a pseudorandom order, with each cue equally
likely to follow every other cue). Data from 15 of the 17 participants were
included in the statistical analysis of the mental replay data: one participant
misunderstood task instructions and did not provide any vividness button
presses, and mental replay data collection was incomplete for another
participant who had to exit the scanner early.

Scanning Procedure. All imaging data were acquired at the MRI Facility of
York University (Keele campus, Toronto, ON, Canada) using a 3T Siemens Tim
Trio MRI scanner and a 32-channel head coil. Eleven sets of functional data
series (nine experimental, two localizer) were collected from each participant
using a T2*-weighted echo-planar imagining sequence with 25 oblique slices
acquired in an interleaved order [slice thickness = 1.75 mm, interslice dis-
tance = 0 mm, voxel size = 1.5 × 1.5 × 1.75 mm, TR = 2000 ms, TE = 34 ms,
matrix size = 128 × 128, field-of-view (FOV) = 192 mm, FA = 78°]. This high-
resolution slice acquisition plan yielded a partial volume for each partici-
pant, which was angled parallel to the long axis of the hippocampus and
captured the temporal and occipital lobes. Each experimental run for the
sequence recognition task lasted for 432 s, during which 216 volumes were
acquired. Each experimental run for the sequence replay task lasted 360 s
and consisted of 180 volumes. Finally, each functional localizer run lasted for
408 s, yielding 204 volumes. The first four scans of each run were discarded
to take into consideration the time for the MR signal to reach equilibrium. In
addition, each participant received a high-resolution T1-weighted MPRAGE
scan (slices =192; voxel size= 1 mm3, TR = 2,300 ms; TE = 2.62 ms; FA = 9°;

matrix size = 256 × 256), which was used for registration purposes and HPC
delineation (including anterior, posterior, and subfield demarcation).

Neuroimaging Analyses.
Data preprocessing. All neuroimaging data were preprocessed using FEAT
(FMRI Expert Analysis Tool) v6.00 and additional tools from FSL (FMRIB
software library; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) (53). Preprocessing steps
included motion correction using MCFLIRT (54), brain extraction using BET
(55), grand mean scaling, and high-pass temporal filtering (cut-off frequency
of 100 s). No spatial smoothing was applied to the experimental data for
multivariate pattern analyses. For univariate analysis of the experimental
data, a 3-mm full-width half-maximum (FWHM) Gaussian smoothing kernel
was applied. Functional localizer data were smoothed with a 6-mm FWHM
Gaussian kernel. Each participant’s functional data were coregistered to
their respective high-resolution 3D anatomical scan using a linear transfor-
mation as implemented by FLIRT (54) as well as to the Montreal Neurological
Institute (MNI) 152 template using FNIRT. Each registration step was visually
inspected for accuracy.
Multivariate pattern analyses. Each event sequence was modeled as a single
9,000-ms event in our general linear model (GLM) and thus, a single-
parameter estimate was derived for each sequence. Because we aimed to
examine the multivariate patterns of activity associated with each sequence,
we wanted to ensure before data collection that any differences in blood-
oxygen level-dependent activity would not be driven simply by differences
in the hemodynamic response elicited by the shifting onset of the second
image in each sequence, a consequence of our interval manipulation. To this
end, we simulated the hemodynamic response associated with the two sets of
interval durations and found that they were highly correlated (P <
0.0001 correlation), such that any difference between the conditions would
be dwarfed by typical noise levels in fMRI data. This precludes the possibility
that hemodynamic response sensitivity to differences in event time course
are sufficient for classification.

All multivariate analyses were run in native space. Per trial parameter es-
timates were generated using an iterative least-squares single GLM approach
(56) in FEAT. For each trial, a GLM was implemented that included a regressor
for that trial as well as another regressor for all other trials. For the sequence-
recognition task, the entire sequence presentation (i.e., 9,000 ms) was mod-
eled as a single trial. For the replay task, trial duration was defined as the
amount of time that had elapsed from the end of the sequence cue to the
participant’s vividness-rating button press, which indicated the end of their
mental replay. Each predictor and its temporal derivative were convolved with
a double-gamma hemodynamic response function and FILM prewhitening was
applied, which included temporal autocorrelation correction. Motion param-
eters estimated by MCFLIRT (six in total) were also entered as nuisance cova-
riates. Per trial parameter estimate maps were then converted to t-statistic
maps to suppress the contribution of noisy voxels that can have potentially
high β-estimates (57). This resulted in 112 t-statistic maps for each subject for
the sequence recognition task (28 maps per condition, excluding catch trials).
For sequence recall, there were 32 t-statistic maps for each subject (8 maps per
condition, excluding catch trials). All maps were then spatially realigned to the
first map from the recognition-task data to ensure that headmovement across
runs was minimized (because multivariate analyses involved cross-validation
across runs). Per trial t-statistic maps associated with incorrect trials were then
removed (i.e., an inaccurate response provided during the recognition task or
a failure to provide a vividness button press during the replay task) and the
remaining maps were averaged across trials for each condition and within
each run to create patterns with improved signal-to-noise ratio. Due to in-
sufficient numbers, incorrect trials were not analyzed further [i.e., a number of
participants made very few errors (≤5) on the recognition task or possessed no
trials at all on the recall task with a missing button press, and incorrect trials
were often distributed unequally across the four different sequences].
A priori ROI classification. Separate HPC ROIs were created for each participant
using FSL’s FIRST automatic segmentation tool (58). The resultant ROIs were
visually inspected and edited by hand if necessary to ensure that the HPC
was correctly identified, according to published criteria (59). Given the
proposed anatomical and functional differences along the longitudinal axis
of the HPC (4, 24, 25), these bilateral subject-specific HPC ROIs were then
further segmented into anterior (mean = 1082.00 voxels, SD = 140.54) and
posterior (mean = 909.82 voxels, SD = 171.09) segments manually, using the
uncal apex as an anatomical landmark.

The PPA area was defined for each subject using two independent
functional localizer scans in which subjects passively viewed photos of faces,
objects, scenes, and scrambled versions of those same stimuli. Thirty-two
gray-scale stimuli were presented within each block, each for 400 ms (in-
terstimulus interval 50 ms). Each run included four blocks of faces, four blocks
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of objects, and four blocks of scenes, all separated by blocks of scrambled
images of each category. A blank screen (1,000ms) was also presented between
each block. In subsequent analyses, for each subject a predictor was convolved
with a double-gammamodel for each stimulus category (scenes, objects, faces)
and scrambled versions of each (i.e., six explanatory variables in total). Pa-
rameter estimates were created for each regressor as well as for the standard
linear contrast of scenes > (faces + objects). The resulting parameter estimate
images for each participant were combined in a fixed-effects analysis and
thresholded at P < 0.001 uncorrected to identify a contiguous cluster of voxels
in the parahippocampal gyrus (60) (mean = 1015.18 voxels, SD = 357.21). One
subject did not have a sufficient number of active voxels in the PPA (even at a
liberal threshold). Therefore, this subject was not included for all statisti-
cal analyses that involved the PPA as an ROI. All ROIs were binarized and
coregistered to each subject’s functional data before multivariate classification
analyses.

Multivariate pattern analyses were used to assess whether distributed
patterns of activity during sequence recognition in any of the ROIs described
above could reliably distinguish between sequences based on: (i) image and
temporal information (sequence decoding: four unique sequences defined
by event and temporal structure); (ii) image information only (image
decoding: the two sets of scene images); or (iii) temporal information only
(temporal decoding: the two sets of intervals separating the scene images).
A linear discriminant analysis (LDA) classifier was used in conjunction with a
leave-one-run-out cross-validation method as implemented in CoSMo MVPA
(61). For cross-classification analyses, the LDA classifier was trained on seven
runs of recognition data and tested on two runs of mental replay data using
an anterior CA1 ROI (see HPC Subfield Analysis, below). For each ROI, clas-
sification accuracies for each participant were entered into a one-sample
t test (one-tailed) against chance. Chance was defined as one/(number of
classes), which equated to 50% for the two-way classification analyses (event
and temporal structure decoding) and 25% for the four-way classification
(individual sequence decoding). Classification accuracies were also compared
across regions by using an ANOVA and follow-up pairwise comparisons (see
Statistical Tests, below) (requests for data and/or analysis code should be
addressed to the corresponding author).
Searchlight analysis. We used a spherical multivariate searchlight approach (62)
to localize the most informative voxels involved in the classification of indi-
vidual sequences in the HPC. To allow us to explore whether other informative
voxels were present in MTL structures beyond the HPC, we applied this analysis
to an MTL ROI. This ROI was created using the Oxford–Harvard cortical and
subcortical atlases encompassing the HPC, anterior parahippocampal gyrus,
and posterior parahippocampal gyrus bilaterally, and thresholded at 50%. This
ROI was subsequently realigned to each participant’s native functional space
(mean = 2862.24 voxels, SD = 217.82). A three-voxel radius sphere was then
centered on every voxel within this ROI and for each sphere, an LDA classifier
was applied to obtain a decoding accuracy that was assigned to the center
voxel. This procedure resulted in decoding accuracy maps that characterized
representations of sequence information across theMTL and each participant’s
accuracy map was then normalized toMNI space (1-mm template). Group-level
significance testing was conducted using permutation tests as implemented by
the “Randomise” function in FSL (63) and threshold-free cluster enhancement
(TFCE) using default values for all options other than number of permuta-
tions (n = 10,000) (64). A voxel-wise significance threshold of P < 0.05 FWE
(small volume corrected) was used.
HPC subfield analysis. HPC subfields—including CA1, CA2, CA3, DG, and subiculum—

were extracted for each subject using FreeSurfer 6.0.0 (https://surfer.nmr.
mgh.harvard.edu/) (65) and the HPC subfield segmentation atlas (66) built
on ultrahigh resolution (∼0.1 mm isotropic) ex vivo MRI data. This produces
subregion volume estimates that closely match volumes derived from his-
tological investigations (66) and has reliable test–retest segmentations (67).

The resultant ROIs were visually inspected to ensure that subregions were
correctly identified, according to published criteria (68). Consistent with
previous studies (30, 69), CA2, CA3, and DG were combined into a single ROI
because these subfields could not be adequately distinguished at our func-
tional resolution (1.5 × 1.5 × 1.75 mm). Classification analyses for recognition
were then conducted on patterns of activity within CA1 (mean = 336.82
voxels, SD = 30.59), CA2-CA3-DG (mean = 272.29 voxels, SD = 38.87), and the
subiculum (91.17 voxels, SD = 16.73) in aHPC, with cross-classification on ac-
tive mental replay data focused on the anterior CA1 given the searchlight and
recognition task subfield classification findings.
Statistical tests. Because not all classifier accuracies for decoding analyses met
parametric assumptions (i.e., data significantly deviated from a normal distri-
bution), statistical tests involved nonparametric procedures. For one-sample
t tests, we used a bootstrapping procedure to determine statistical signifi-
cance (70). For each test, the original classification accuracies across the 17
participants (15 for mental replay analysis) were tested against chance to
obtain a parametric t value. Seventeen datasets (15 for mental replay analysis)
were then randomly sampled with replacement 10,000 times and an absolute
t value was calculated for each sample. A bootstrapped P value was then
obtained by calculating the proportion of resampled absolute t values that
was higher than the original t value (i.e., two-tailed test). For repeated-
measures ANOVAs, statistical significance was determined using randomiza-
tion procedures. For the ANOVAs this involved computing the parametric F
values, permuting the data within each participant, and recomputing the F
values on the permuted data. This procedure was then repeated 10,000 times
to yield a permuted (null) distribution of F values. We then assessed each of
the original F values relative to the permuted distribution to compute the
probability of obtaining an F value that is equal to or larger than the original F
value. For pairwise t tests, differences between conditions were first calculated
for each participant and a group mean was calculated. This procedure was
then repeated 10,000 times with random sign-flips on the data to yield a null
distribution of absolute differences. The original mean difference was then
compared with this null distribution to estimate the likelihood of obtaining a
difference equal to or greater than this value (i.e., two-tailed test). All statistics
were run using custom scripts in R v3.3.3 (https://www.R-project.org/).
Univariate analysis. We ran additional analyses to rule out any overall uni-
variate differences in activity between sequences. Each run of the pre-
processed, smoothed data from the scanned recognition task for each
participant was submitted to a GLM, with the different sequences specified as
predictors and convolved with a double-gamma model of the hemodynamic
response function. Parameter estimates were generated for contrasts be-
tween sequences, which included an effect of event [e.g., (sequence 1 +
sequence 2) vs. (sequence 3 + sequence 4)] and temporal structure [e.g.,
(sequence 1 + sequence 3) vs. (sequence 2 + sequence 4)], as well as an in-
teraction effect [e.g., (sequence 1 − sequence 2) vs. (sequence 3 − sequence 4)].
The parameter estimates for each run for each participant were then com-
bined in a fixed-effects analysis and the resulting statistical images were
subsequently combined in a higher-level group analysis. Significance was
assessed using TFCE and Randomise (default settings with 10,000 permuta-
tions), and a relatively liberal threshold of P < 0.1 (small volume corrected
within bilateral HPC or PPA) was applied to explore potential differences in
univariate activity across the different sequences.
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